

The Future of Technology in Social Care Series

House Keeping

- This webinar is being recorded
- Attendees are on mute and can't be seen
- Please use the Q&A function to ask questions.
- On a phone, tap the screen to see the controls choose More and then Q&A
- You will get access to the recording and the presentation (inc links)

Agenda

Time	Agenda Item	Speaker
3:00 - 3:10	Welcome and Overview of Robots in Social Care	Professor Vic Rayner OBE
3:10 - 3:30	Robotics in hybrid models of care delivery	Rob Parkes
3:30 – 3:50	User acceptance of non-intrusive sensing technology and physical robots among older adults: A survey	Dr Yordanka Karayaneva
3:50 - 4:10	Empowering care workforces	Dr Cian O'Donovan
4:10 - 4:25	Q&A session for the panel	All
4:25 – 4:30	Close	Professor Vic Rayner OBE

The Future of Technology in Social Care Series

- Robotics

 12 January 2023, 3 4:30pm

 Artificial Intelligence

 8 February 2023, 1 2:30pm
- Implementation
 - 6 March 2023, 2 3:30pm

Robots transform the workforce

"Necessity will drive a shift as organisations and entire sectors realise that adopting robotics at scale is the only way to deliver the output they need with the workforce they have available. The result will be workforce transformation [...] People often worry about robots taking people's jobs. But none of the countries that have adopted robots on a large scale— Germany, Japan, Singapore and South Korea—has a problem with unemployment. And all of them have a higher proportion of their workforces employed in manufacturing than America does. More robots, in short, seem to be associated with more manufacturing jobs."

- Kim Povlsen, president, Universal Robots <u>https://www.economist.com/the-world-</u>ahead/2022/11/18/kim-povlsen-says-we-should-welcome-robots-not-fear-them

Robotics in the United States

Leading Age – the largest community of non-profit aging services providers and other mission-driven organizations serving older adults in the USA – published their <u>19th Annual LeadingAge Ziegler (LZ 200)</u> report in November 2022.

This showed that of the 200 largest not-for-profit senior living organisations in the USA, **57%** have implemented robotic processing automation and **43%** have added physical robots.

Robotics in hybrid models of care delivery

Rob Parkes

CEO

GenieConnect[®] | Service Robotics Ltd

ROBOTICS IN HYBRID CARE DELIVERY

Rob Parkes, CEO at Service Robotics

A new era is here

The care landscape is changing and robotics are at the forefront

13,600 medically fit patients waiting to be discharged

Each blocked bed costs the NHS £180,000 per year

165,000 care vacancies

1.2million older adults feel lonely and over half of disabled people reported feeling lonely

The robotic landscape

The robotic landscape

The Care Portal

Introducing a new care model

Hybrid care models represent a real opportunity to increase care delivery capacity and quality. They allow an increase in-person care delivery efficiency, through the addition of remote care. Conservative estimates show a 15% improvement in care delivery capacity with hybrid models.

Case Study #1 Loneliness

Older Adult Care

Meet Mr T

Isolated due to remote location, illness and lack of access to support

"Well look at that, you are right there"

Companionship to reduce loneliness and isolation

Digital equality and accessibility

Improved mental wellbeing

Case Study #2 Independent Living

Learning Disabilities

Meet Adam

Missed appointments and essential medication

"It's better than my phone because I'm so used to my phone's reminders."

Audible & visual reminder encourages to take mediation

Increases his self-awareness of how he is feeling

Attending all healthcare appointments

Case Study #3 Reablement

Home From Hospital

Meet Jane

Had a serious accident and was unable to walk.

- 1 in-person visit per day for 3 weeks, then 3 times a week
- Daily mood check-ins
- Exercise reminders

Flexible plan to meet changes in need

Daily tasks progression

Reassured her mood was being monitored

Discover More Book a demo

https://1.genieconnect.co.uk/demo

Available Funding

Invest To Save Calculator

Dashboard Data

https://forms.office.com/e/YdCACMrNWU

Want to give us feedback?

Share your thoughts on the overall experience, content, and speaker.

Estimated time 4 minutes

User acceptance of non-intrusive sensing technology and physical robots among older adults: A survey

Dr. Yordanka Karayaneva (y.karayaneva@tees.ac.uk)

Lecturer in Computer Science School of Computing, Engineering & Digital Technologies, Teesside University

The Future of Social Care Technology – Robotics 12th January 2023

User acceptance of non-intrusive sensing technology and physical robots among older adults: A survey

Dr. Yordanka Karayaneva (<u>y.karayaneva@tees.ac.uk</u>) Lecturer in Computer Science School of Computing, Engineering & Digital Technologies, Teesside University

Study aims of the survey

Data collection

Study findings

- Non-intrusive sensing technology
- Robots with a physical presence

Discussion

Study Aims

□ The following aspects have been identified as important by the literature review:

- Acceptance of monitoring technology
- Acceptance of robots for making decisions
- Preferred appearance
- Acceptance of a robot's physical work and social roles
- Acceptance of different functions of the robot

Data Collection

□ The survey questionnaire was administered in September / October 2019

The questionnaire included illustrative examples

Extra time was spent to familiarise the residents with the studied concepts

Participants could answer either in writing or verbally

Gender	Number	Age±SD	Age range
Female	18	90.55±4.49	81-99
Male	3	89.66±4.18	84-94

Q1 and Q2 aimed at investigating the perceived usefulness of non-intrusive sensing technology based on:

- Physical health and well-being (a)
- Mental health and well-being (b)

Q3 aimed at investigating the factors affecting the user acceptance of robots with a physical presence:

- Usefulness
- Ease of use
- Functionalities
- Physical appearance
- Cost

Q4 and Q5 aimed at investigating how likely the residents are:

- To accept a robot at home by agreeing or disagreeing with the statement "I am likely to use robots in my home" (a)
- To accept a robot for making decisions (b)

(b)

Q6 aimed at investigating the preferred robotic physical appearance:

- Humanoid robots (a)
- Animal-like robots (b)
- Machine-like robots (c)

Q7 aimed at investigating the most preferred activities (physical and social) to be preferred by a robot:

- Communication with relatives
- Entertainment
- Navigation
- Medicine reminder
- Cooking
- Communication with the robot
- Cleaning

Q8 and Q9 aimed at investigating whether robots with a physical presence can improve the residents':

- Physical health and well-being (a)
- Mental health and well-being (b)

Non-intrusive technology revealed higher user acceptance than

physical robots

The most preferred robotic appearance was humanoid, while the

preferred factors were usefulness and ease-of-use

Cleaning showed the highest user acceptance considered activities to

be conducted by a physical robot

Thank you!

Empowering Care Workforces

Dr. Cian O'Donovan

Senior Research Fellow | Department of Science and Technology Studies | UCL

c.o'donovan@ucl.ac.uk

Empowering future care workforces

The potential and practicalities of robotics in care

Cian O'Donovan Senior Research Fellow UCL Department of Science and Technology Studies c.o'donovan@ucl.ac.uk | @cian

Empowering Future Care Workforces:

Scoping Capabilities to Leverage Assistive Robotics through Co-Design

How can **health and social care professionals** benefit from using assistive robotics in ways that are safe, trustworthy, legal and ethical?

THE PROJECT WORKFORCE

Lead contact: Dr. Cian O'Donovan Senior Research Fellow UCL Dept. of Science and **Technology Studies**

Co-Investigator: Dr. Linda Sumpter **Research Fellow** UCL Dept. of Science and **Technology Studies**

Partner:

in Neurology

Adine Adonis

Co-Investigator: Prof. Praminda Caleb-Solly Professor of Embodied Intelligence, University of Nottingham

Co-Investigator: Prof. Robin Williams Professor of Social Research on Technology University of Edinburgh

Co-Investigator: Dr. Praveen Kumar Senior Lecturer in Physiotherapy UWE Bristol

Co-Investigator: Dr. Siabhainn Russell **Research Fellow** UCL Dept. of Science and **Technology Studies**

2021 Praminda Caleb-Solly

Physically Assistive Robots

Example Applications:

Walking assistanceSit-to-stand and mobility assistance

Functional Support for:

Maintaining independence

Enabling Rehabilitation

- Addressing care staff shortages
- Alleviation of physical workload for carers

Supporting frequent and guided practice of exercises Reduction from two carers to one, or even zero for mundane tasks rs Reduces injuries such as back strain, reduces sickness absence

Physical support for tasks such as dressing, walking, food preparation

Providing diagnostic information for carers Sensor data recording, trend analysis, detection of emerging conditions

Levels of Assistance and Interaction

- robotics
- Patients/users can have complex multiple co-morbidities and changing conditions
- Operational conditions are complex and multivariate, often with no analytic solutions
- There is the lack of sufficient data with respect to the potential risks

2022 Praminda Caleb-Solly

Project aim

From centering the user, to the workforce

Project aims

To scope...

- a) what kind of digital capabilities empower care professionals to perform tasks with assistive robots with greater skill, fluency and proficiency, and on their terms?
- b) how can these capabilities be **cultivated** via **training** and **responsible innovation?**

We've introduced robots to ~30 professionals, service users, patients and family carers value

WHAT SHOULD YOU BE ABLE TO DO WITH THIS ROBOT?

SAFET Who explains AUTONOMY PRIVACY implications A how ... for MULTIPLE USERS Who sets the balance? We introduced Are you what about for those with SUR YOU people to Wantto 90+4is COQNITIVE problems man assistive robots Whois and asked: nevent of what mishap? capabilities dontheed it ADJUSTABLE? Useful for 1 don 4 want will you need Parkinsons patients? on me! Should to work with walker DOOFPROMPIS interact them? with to meet to need a walker? PATIENT RECORDS

lovingly scribbled by somehurch illustration

Emerging: six sets of valued human capabilities

Example: Ensuring safety during operation

Next Steps: test ideas about how to expand these digital capabilities (e.g, **through training, better research infrastructure etc.**)

Thinking about training: opportunities to scope interventions with our project partners

So what

- Will the technology actually solve today's problems?
- Is the technology cost-effective? (value for money, empowered procurement)
- Who does set-up, repair, safety assurance? What skills?
- Who is the end-user? How usable is the technology by them?
- Where is the data, who is responsible?
- Is the infrastructure in place and capable of dealing with these additional interventions?
- How will existing care pathways change to accommodate new systems, practices and processes?

Seven questions to answer before deploying robots in health and care written by by slabhainn russell with praminda caleb solly.

PRAVEEN KUMAR AND CIAN O'DONOVAN.

EMPOWERING FUTURE CARE WORKFORCES, UCL

Assistive robots promise to transform health and social care. However before robotic technologies can work in the real world, there will undoubtedly need to be significant adaptations at a systemic and process-level to fit them in. Take driverless cars: In the last few years we've seen calls by lawyers to update the rules of the road and electric charging docks are springing up all over cities in the UK and elsewhere.

Siabhainn Russell, 2022: https://tas.ac.uk/seven-questions-to-answer-before-deploying-robots-in-health-and-care/ and work from Linda Sumpter et al (coming soon)

Future issues, today

- From *time on task* to outcomes (e.g. Cavendish report)
 - E.g. Strength based / wellbeing approaches
 - What role do robotics systems have here
- Wider networks and infrastructures

- Do we need a broader view of what social care is? What role data and robotics?
- Funding issues: who pays?
 - Multiple overlapping crises, cuts in back end infrastructure vs new digital drives (is access & inclusion front and centre of these digital drives?) (will people have pay for their own salary?)
- We need data ethics that are situation-aware: values, context, complexity

Forward plans

- 1. Scoping training needs working with partners and steering group
- 2. Responsible innovation infrastructures report to discuss: how can TAS Hub / nodes help with follow up actions and project here

Progress towards principles and expectations of Equality, diversity and inclusion & responsible innovation

Contributing to research infrastructures for assistive robots

This project is about *how we bake in* accountability, safety, trustworthiness and responsibility to our care infrastructures

The lessons we're learning are applicable across UK digital transformation research and practice

We could do with your help...

Empowering future care workforces

The potential and practicalities of robotics in care

Cian O'Donovan Senior Research Fellow UCL Department of Science and Technology Studies c.o'donovan@ucl.ac.uk | @cian

Question & Answer Session

Thank you

